3.20.17 \(\int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)^2} \, dx\) [1917]

3.20.17.1 Optimal result
3.20.17.2 Mathematica [A] (verified)
3.20.17.3 Rubi [A] (verified)
3.20.17.4 Maple [A] (verified)
3.20.17.5 Fricas [A] (verification not implemented)
3.20.17.6 Sympy [A] (verification not implemented)
3.20.17.7 Maxima [A] (verification not implemented)
3.20.17.8 Giac [A] (verification not implemented)
3.20.17.9 Mupad [B] (verification not implemented)

3.20.17.1 Optimal result

Integrand size = 24, antiderivative size = 154 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)^2} \, dx=-\frac {46555 \sqrt {1-2 x}}{42 (3+5 x)}+\frac {7 \sqrt {1-2 x}}{9 (2+3 x)^3 (3+5 x)}+\frac {133 \sqrt {1-2 x}}{18 (2+3 x)^2 (3+5 x)}+\frac {6949 \sqrt {1-2 x}}{63 (2+3 x) (3+5 x)}-\frac {321161 \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{7 \sqrt {21}}+1350 \sqrt {55} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

output
-321161/147*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)+1350*arctanh(1/11 
*55^(1/2)*(1-2*x)^(1/2))*55^(1/2)-46555/42*(1-2*x)^(1/2)/(3+5*x)+7/9*(1-2* 
x)^(1/2)/(2+3*x)^3/(3+5*x)+133/18*(1-2*x)^(1/2)/(2+3*x)^2/(3+5*x)+6949/63* 
(1-2*x)^(1/2)/(2+3*x)/(3+5*x)
 
3.20.17.2 Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.62 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)^2} \, dx=-\frac {\sqrt {1-2 x} \left (117752+539819 x+824092 x^2+418995 x^3\right )}{14 (2+3 x)^3 (3+5 x)}-\frac {321161 \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{7 \sqrt {21}}+1350 \sqrt {55} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

input
Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)^4*(3 + 5*x)^2),x]
 
output
-1/14*(Sqrt[1 - 2*x]*(117752 + 539819*x + 824092*x^2 + 418995*x^3))/((2 + 
3*x)^3*(3 + 5*x)) - (321161*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(7*Sqrt[21]) 
 + 1350*Sqrt[55]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]]
 
3.20.17.3 Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.09, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {109, 168, 27, 168, 27, 168, 27, 174, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(1-2 x)^{3/2}}{(3 x+2)^4 (5 x+3)^2} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {1}{9} \int \frac {155-233 x}{\sqrt {1-2 x} (3 x+2)^3 (5 x+3)^2}dx+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3 (5 x+3)}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{9} \left (\frac {1}{14} \int \frac {7 (2416-3325 x)}{\sqrt {1-2 x} (3 x+2)^2 (5 x+3)^2}dx+\frac {133 \sqrt {1-2 x}}{2 (3 x+2)^2 (5 x+3)}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3 (5 x+3)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \int \frac {2416-3325 x}{\sqrt {1-2 x} (3 x+2)^2 (5 x+3)^2}dx+\frac {133 \sqrt {1-2 x}}{2 (3 x+2)^2 (5 x+3)}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3 (5 x+3)}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (\frac {1}{7} \int \frac {3 (60727-69490 x)}{\sqrt {1-2 x} (3 x+2) (5 x+3)^2}dx+\frac {13898 \sqrt {1-2 x}}{7 (3 x+2) (5 x+3)}\right )+\frac {133 \sqrt {1-2 x}}{2 (3 x+2)^2 (5 x+3)}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3 (5 x+3)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (\frac {3}{7} \int \frac {60727-69490 x}{\sqrt {1-2 x} (3 x+2) (5 x+3)^2}dx+\frac {13898 \sqrt {1-2 x}}{7 (3 x+2) (5 x+3)}\right )+\frac {133 \sqrt {1-2 x}}{2 (3 x+2)^2 (5 x+3)}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3 (5 x+3)}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (\frac {3}{7} \left (-\frac {1}{11} \int \frac {33 (76017-46555 x)}{\sqrt {1-2 x} (3 x+2) (5 x+3)}dx-\frac {46555 \sqrt {1-2 x}}{5 x+3}\right )+\frac {13898 \sqrt {1-2 x}}{7 (3 x+2) (5 x+3)}\right )+\frac {133 \sqrt {1-2 x}}{2 (3 x+2)^2 (5 x+3)}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3 (5 x+3)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (\frac {3}{7} \left (-3 \int \frac {76017-46555 x}{\sqrt {1-2 x} (3 x+2) (5 x+3)}dx-\frac {46555 \sqrt {1-2 x}}{5 x+3}\right )+\frac {13898 \sqrt {1-2 x}}{7 (3 x+2) (5 x+3)}\right )+\frac {133 \sqrt {1-2 x}}{2 (3 x+2)^2 (5 x+3)}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3 (5 x+3)}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (\frac {3}{7} \left (-3 \left (519750 \int \frac {1}{\sqrt {1-2 x} (5 x+3)}dx-321161 \int \frac {1}{\sqrt {1-2 x} (3 x+2)}dx\right )-\frac {46555 \sqrt {1-2 x}}{5 x+3}\right )+\frac {13898 \sqrt {1-2 x}}{7 (3 x+2) (5 x+3)}\right )+\frac {133 \sqrt {1-2 x}}{2 (3 x+2)^2 (5 x+3)}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3 (5 x+3)}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (\frac {3}{7} \left (-3 \left (321161 \int \frac {1}{\frac {7}{2}-\frac {3}{2} (1-2 x)}d\sqrt {1-2 x}-519750 \int \frac {1}{\frac {11}{2}-\frac {5}{2} (1-2 x)}d\sqrt {1-2 x}\right )-\frac {46555 \sqrt {1-2 x}}{5 x+3}\right )+\frac {13898 \sqrt {1-2 x}}{7 (3 x+2) (5 x+3)}\right )+\frac {133 \sqrt {1-2 x}}{2 (3 x+2)^2 (5 x+3)}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3 (5 x+3)}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (\frac {3}{7} \left (-3 \left (\frac {642322 \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{\sqrt {21}}-18900 \sqrt {55} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )\right )-\frac {46555 \sqrt {1-2 x}}{5 x+3}\right )+\frac {13898 \sqrt {1-2 x}}{7 (3 x+2) (5 x+3)}\right )+\frac {133 \sqrt {1-2 x}}{2 (3 x+2)^2 (5 x+3)}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3 (5 x+3)}\)

input
Int[(1 - 2*x)^(3/2)/((2 + 3*x)^4*(3 + 5*x)^2),x]
 
output
(7*Sqrt[1 - 2*x])/(9*(2 + 3*x)^3*(3 + 5*x)) + ((133*Sqrt[1 - 2*x])/(2*(2 + 
 3*x)^2*(3 + 5*x)) + ((13898*Sqrt[1 - 2*x])/(7*(2 + 3*x)*(3 + 5*x)) + (3*( 
(-46555*Sqrt[1 - 2*x])/(3 + 5*x) - 3*((642322*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2 
*x]])/Sqrt[21] - 18900*Sqrt[55]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])))/7)/2) 
/9
 

3.20.17.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 
3.20.17.4 Maple [A] (verified)

Time = 1.08 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.53

method result size
risch \(\frac {837990 x^{4}+1229189 x^{3}+255546 x^{2}-304315 x -117752}{14 \left (2+3 x \right )^{3} \sqrt {1-2 x}\, \left (3+5 x \right )}-\frac {321161 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{147}+1350 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}\) \(81\)
derivativedivides \(\frac {110 \sqrt {1-2 x}}{-\frac {6}{5}-2 x}+1350 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}+\frac {\frac {63009 \left (1-2 x \right )^{\frac {5}{2}}}{7}-42412 \left (1-2 x \right )^{\frac {3}{2}}+49973 \sqrt {1-2 x}}{\left (-4-6 x \right )^{3}}-\frac {321161 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{147}\) \(91\)
default \(\frac {110 \sqrt {1-2 x}}{-\frac {6}{5}-2 x}+1350 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}+\frac {\frac {63009 \left (1-2 x \right )^{\frac {5}{2}}}{7}-42412 \left (1-2 x \right )^{\frac {3}{2}}+49973 \sqrt {1-2 x}}{\left (-4-6 x \right )^{3}}-\frac {321161 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{147}\) \(91\)
pseudoelliptic \(\frac {-642322 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \left (2+3 x \right )^{3} \left (3+5 x \right ) \sqrt {21}+396900 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \left (2+3 x \right )^{3} \left (3+5 x \right ) \sqrt {55}-21 \sqrt {1-2 x}\, \left (418995 x^{3}+824092 x^{2}+539819 x +117752\right )}{294 \left (2+3 x \right )^{3} \left (3+5 x \right )}\) \(102\)
trager \(-\frac {\left (418995 x^{3}+824092 x^{2}+539819 x +117752\right ) \sqrt {1-2 x}}{14 \left (2+3 x \right )^{3} \left (3+5 x \right )}-675 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right ) \ln \left (\frac {5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right ) x +55 \sqrt {1-2 x}-8 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right )}{3+5 x}\right )+\frac {321161 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) \ln \left (\frac {3 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) x -5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right )+21 \sqrt {1-2 x}}{2+3 x}\right )}{294}\) \(128\)

input
int((1-2*x)^(3/2)/(2+3*x)^4/(3+5*x)^2,x,method=_RETURNVERBOSE)
 
output
1/14*(837990*x^4+1229189*x^3+255546*x^2-304315*x-117752)/(2+3*x)^3/(1-2*x) 
^(1/2)/(3+5*x)-321161/147*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)+135 
0*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^(1/2)
 
3.20.17.5 Fricas [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.97 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)^2} \, dx=\frac {198450 \, \sqrt {55} {\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )} \log \left (\frac {5 \, x - \sqrt {55} \sqrt {-2 \, x + 1} - 8}{5 \, x + 3}\right ) + 321161 \, \sqrt {21} {\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )} \log \left (\frac {3 \, x + \sqrt {21} \sqrt {-2 \, x + 1} - 5}{3 \, x + 2}\right ) - 21 \, {\left (418995 \, x^{3} + 824092 \, x^{2} + 539819 \, x + 117752\right )} \sqrt {-2 \, x + 1}}{294 \, {\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^4/(3+5*x)^2,x, algorithm="fricas")
 
output
1/294*(198450*sqrt(55)*(135*x^4 + 351*x^3 + 342*x^2 + 148*x + 24)*log((5*x 
 - sqrt(55)*sqrt(-2*x + 1) - 8)/(5*x + 3)) + 321161*sqrt(21)*(135*x^4 + 35 
1*x^3 + 342*x^2 + 148*x + 24)*log((3*x + sqrt(21)*sqrt(-2*x + 1) - 5)/(3*x 
 + 2)) - 21*(418995*x^3 + 824092*x^2 + 539819*x + 117752)*sqrt(-2*x + 1))/ 
(135*x^4 + 351*x^3 + 342*x^2 + 148*x + 24)
 
3.20.17.6 Sympy [A] (verification not implemented)

Time = 90.43 (sec) , antiderivative size = 697, normalized size of antiderivative = 4.53 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)^2} \, dx=\frac {7480 \sqrt {21} \left (\log {\left (\sqrt {1 - 2 x} - \frac {\sqrt {21}}{3} \right )} - \log {\left (\sqrt {1 - 2 x} + \frac {\sqrt {21}}{3} \right )}\right )}{7} - 680 \sqrt {55} \left (\log {\left (\sqrt {1 - 2 x} - \frac {\sqrt {55}}{5} \right )} - \log {\left (\sqrt {1 - 2 x} + \frac {\sqrt {55}}{5} \right )}\right ) - 13596 \left (\begin {cases} \frac {\sqrt {21} \left (- \frac {\log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{4} + \frac {\log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{4} - \frac {1}{4 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} - \frac {1}{4 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )}\right )}{147} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right ) + 3696 \left (\begin {cases} \frac {\sqrt {21} \cdot \left (\frac {3 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{16} - \frac {3 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{16} + \frac {3}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} + \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )^{2}} + \frac {3}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )} - \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )^{2}}\right )}{1029} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right ) - 784 \left (\begin {cases} \frac {\sqrt {21} \left (- \frac {5 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{32} + \frac {5 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{32} - \frac {5}{32 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} - \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )^{2}} - \frac {1}{48 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )^{3}} - \frac {5}{32 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )} + \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )^{2}} - \frac {1}{48 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )^{3}}\right )}{7203} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right ) - 12100 \left (\begin {cases} \frac {\sqrt {55} \left (- \frac {\log {\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} - 1 \right )}}{4} + \frac {\log {\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} + 1 \right )}}{4} - \frac {1}{4 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} + 1\right )} - \frac {1}{4 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} - 1\right )}\right )}{605} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {55}}{5} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {55}}{5} \end {cases}\right ) \]

input
integrate((1-2*x)**(3/2)/(2+3*x)**4/(3+5*x)**2,x)
 
output
7480*sqrt(21)*(log(sqrt(1 - 2*x) - sqrt(21)/3) - log(sqrt(1 - 2*x) + sqrt( 
21)/3))/7 - 680*sqrt(55)*(log(sqrt(1 - 2*x) - sqrt(55)/5) - log(sqrt(1 - 2 
*x) + sqrt(55)/5)) - 13596*Piecewise((sqrt(21)*(-log(sqrt(21)*sqrt(1 - 2*x 
)/7 - 1)/4 + log(sqrt(21)*sqrt(1 - 2*x)/7 + 1)/4 - 1/(4*(sqrt(21)*sqrt(1 - 
 2*x)/7 + 1)) - 1/(4*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)))/147, (sqrt(1 - 2*x) 
> -sqrt(21)/3) & (sqrt(1 - 2*x) < sqrt(21)/3))) + 3696*Piecewise((sqrt(21) 
*(3*log(sqrt(21)*sqrt(1 - 2*x)/7 - 1)/16 - 3*log(sqrt(21)*sqrt(1 - 2*x)/7 
+ 1)/16 + 3/(16*(sqrt(21)*sqrt(1 - 2*x)/7 + 1)) + 1/(16*(sqrt(21)*sqrt(1 - 
 2*x)/7 + 1)**2) + 3/(16*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)) - 1/(16*(sqrt(21) 
*sqrt(1 - 2*x)/7 - 1)**2))/1029, (sqrt(1 - 2*x) > -sqrt(21)/3) & (sqrt(1 - 
 2*x) < sqrt(21)/3))) - 784*Piecewise((sqrt(21)*(-5*log(sqrt(21)*sqrt(1 - 
2*x)/7 - 1)/32 + 5*log(sqrt(21)*sqrt(1 - 2*x)/7 + 1)/32 - 5/(32*(sqrt(21)* 
sqrt(1 - 2*x)/7 + 1)) - 1/(16*(sqrt(21)*sqrt(1 - 2*x)/7 + 1)**2) - 1/(48*( 
sqrt(21)*sqrt(1 - 2*x)/7 + 1)**3) - 5/(32*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)) 
+ 1/(16*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)**2) - 1/(48*(sqrt(21)*sqrt(1 - 2*x) 
/7 - 1)**3))/7203, (sqrt(1 - 2*x) > -sqrt(21)/3) & (sqrt(1 - 2*x) < sqrt(2 
1)/3))) - 12100*Piecewise((sqrt(55)*(-log(sqrt(55)*sqrt(1 - 2*x)/11 - 1)/4 
 + log(sqrt(55)*sqrt(1 - 2*x)/11 + 1)/4 - 1/(4*(sqrt(55)*sqrt(1 - 2*x)/11 
+ 1)) - 1/(4*(sqrt(55)*sqrt(1 - 2*x)/11 - 1)))/605, (sqrt(1 - 2*x) > -sqrt 
(55)/5) & (sqrt(1 - 2*x) < sqrt(55)/5)))
 
3.20.17.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.95 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)^2} \, dx=-675 \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) + \frac {321161}{294} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) + \frac {418995 \, {\left (-2 \, x + 1\right )}^{\frac {7}{2}} - 2905169 \, {\left (-2 \, x + 1\right )}^{\frac {5}{2}} + 6712629 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 5168471 \, \sqrt {-2 \, x + 1}}{7 \, {\left (135 \, {\left (2 \, x - 1\right )}^{4} + 1242 \, {\left (2 \, x - 1\right )}^{3} + 4284 \, {\left (2 \, x - 1\right )}^{2} + 13132 \, x - 2793\right )}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^4/(3+5*x)^2,x, algorithm="maxima")
 
output
-675*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 
 1))) + 321161/294*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 
 3*sqrt(-2*x + 1))) + 1/7*(418995*(-2*x + 1)^(7/2) - 2905169*(-2*x + 1)^(5 
/2) + 6712629*(-2*x + 1)^(3/2) - 5168471*sqrt(-2*x + 1))/(135*(2*x - 1)^4 
+ 1242*(2*x - 1)^3 + 4284*(2*x - 1)^2 + 13132*x - 2793)
 
3.20.17.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.90 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)^2} \, dx=-675 \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) + \frac {321161}{294} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {275 \, \sqrt {-2 \, x + 1}}{5 \, x + 3} - \frac {63009 \, {\left (2 \, x - 1\right )}^{2} \sqrt {-2 \, x + 1} - 296884 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + 349811 \, \sqrt {-2 \, x + 1}}{56 \, {\left (3 \, x + 2\right )}^{3}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^4/(3+5*x)^2,x, algorithm="giac")
 
output
-675*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*s 
qrt(-2*x + 1))) + 321161/294*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2* 
x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 275*sqrt(-2*x + 1)/(5*x + 3) - 1/ 
56*(63009*(2*x - 1)^2*sqrt(-2*x + 1) - 296884*(-2*x + 1)^(3/2) + 349811*sq 
rt(-2*x + 1))/(3*x + 2)^3
 
3.20.17.9 Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.70 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)^2} \, dx=1350\,\sqrt {55}\,\mathrm {atanh}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}}{11}\right )-\frac {321161\,\sqrt {21}\,\mathrm {atanh}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}}{7}\right )}{147}-\frac {\frac {738353\,\sqrt {1-2\,x}}{135}-\frac {319649\,{\left (1-2\,x\right )}^{3/2}}{45}+\frac {2905169\,{\left (1-2\,x\right )}^{5/2}}{945}-\frac {9311\,{\left (1-2\,x\right )}^{7/2}}{21}}{\frac {13132\,x}{135}+\frac {476\,{\left (2\,x-1\right )}^2}{15}+\frac {46\,{\left (2\,x-1\right )}^3}{5}+{\left (2\,x-1\right )}^4-\frac {931}{45}} \]

input
int((1 - 2*x)^(3/2)/((3*x + 2)^4*(5*x + 3)^2),x)
 
output
1350*55^(1/2)*atanh((55^(1/2)*(1 - 2*x)^(1/2))/11) - (321161*21^(1/2)*atan 
h((21^(1/2)*(1 - 2*x)^(1/2))/7))/147 - ((738353*(1 - 2*x)^(1/2))/135 - (31 
9649*(1 - 2*x)^(3/2))/45 + (2905169*(1 - 2*x)^(5/2))/945 - (9311*(1 - 2*x) 
^(7/2))/21)/((13132*x)/135 + (476*(2*x - 1)^2)/15 + (46*(2*x - 1)^3)/5 + ( 
2*x - 1)^4 - 931/45)